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Abstract

Context Habitat characteristics are often equated

with habitat function for animals. However, in

heterogeneous landscapes, similar habitat types occur

in different environmental contexts. In the marine

realm, landscape studies have been confined to

particular environments, rather than encompassing

entire seascapes, due to incompatible sampling meth-

ods required in different situations.

Objectives We examined the interactive structuring

effects of local habitat characteristics and environ-

mental context on assemblage composition.

Methods We used a single technique—remote

underwater video census—to explore the importance

of habitat type (biotic structural components, sub-

strate, and depth) and environmental context (marine

vs estuarine) in structuring juvenile fish assemblages

throughout an entire coastal region. In this model

system, a range of structural habitat types were present

in both estuarine and marine contexts.

Results The1315video surveys collected showaclear

hierarchy in the organisation of juvenile fish commu-

nities, with assemblages first distinguished by environ-

mental context, then by habitat type. Marine and

estuarinemangroves contained entirely different assem-

blages, and likewise for rocky reefs and submerged

aquatic vegetation. Our results suggest that two func-

tionally different ‘seascape nursery’ types exist at local

scales within a single region, defined by their context.

Conclusions The context of a location can be of

greater significance in determining potential habitat

function than what habitat-forming biota and sub-

strates are present, and apparently similar habitat types

in different contexts may be functionally distinct.

These findings have important implications for local-

scale management and conservation of juvenile fish

habitats, particularly in regard to offsetting and

restoration.
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Introduction

Habitat characteristics (such as vegetation type) have

long been recognised as the key determinant of animal

communities throughout land and seascapes (South-

wood 1977). Accordingly, the habitat characteristics

of a location have long been equated with the

functional role of that habitat for animals. However,

ecologists have recently started to examine how

context can influence the assemblage of animals found

in certain habitats. Physical context (e.g. Bellwood

et al. 2002), ecological context (e.g. Laundré et al.

2010), spatial context (e.g. Turner 1989), and temporal

context (e.g. Law and Dickman 1998), all modify the

way habitats are used by animals. Thus, together,

habitat characteristics and contextual factors interact

to determine the distribution of animals (Sisk et al.

1997). Local habitat characteristics tend to be consis-

tently important predictors of animal presence, while

contextual factors are usually only important when

considered in combination with local habitat charac-

teristics, and their importance tends to vary according

to the taxa and system under investigation (Atauri and

de Lucio 2001; Mazerolle and Villard 1999). Under-

standing both the relative importance of these factors,

and how they interact, is essential for understanding

how animals are causally linked to their environment,

and how they might respond to change.

For some systems and taxa, we still do not have a

systematic understanding of how contextual and local

habitat factors interact to determine the distribution of

animals. On many coasts, a suite of similar habitat

types are present across a patchwork of marine and

estuarine contexts, often in quite close proximity.

Seagrass meadows, for example, can occur anywhere

from enclosed low-salinity swamps to the seabed of

the continental shelf, including bays and reefs in

between (Carruthers et al. 2007). Studies have rarely

explicitly tried to encompass the full breadth of

variation present in these contextually heterogeneous

regions, despite the fact that many fauna have the

potential to use both marine and estuarine environ-

ments (Able 2005). This raises the question: do

animals relate to these habitats across their full range,

or are their habitat relationships context dependent?

And, if so, how do habitat characteristics and contex-

tual factors interact to determine assemblages in these

regions? This remains a large and critical gap in our

understanding (Faunce and Layman 2009; Sheaves

2017).

For juvenile fish, developing a detailed understand-

ing of habitat relationships in these regions is partic-

ularly important. The juvenile phase in the life cycle

can be a critical population bottleneck (Chambers and

Trippel 2012) and during this period, growth and

mortality can be mediated by habitat (Tupper and

Boutilier 1997). This can lead to complex habitat

requirements. A common Caribbean reef fish,Haemu-

lon flavolineatum, shifts between rubble, seagrass,

mangroves and boulders to optimise survival and

growth during its juvenile phase (Grol et al. 2014).

Accordingly, the availability of appropriate juvenile

habitats can have strong impacts on populations of

adults (Nagelkerken et al. 2017). Knowledge of

habitat use by juvenile fish is used to assign functional

nursery roles to particular habitat types, such as

mangroves or saltmarsh (Whitfield 2017). Thus,

knowledge of habitat use by juvenile fish underpins

efforts to conserve species and sustain fishery pro-

duction (Crowder et al. 2000; Nagelkerken et al.

2012).

Until now, our ability to understand fish habitat use

along many coastlines has been hindered by a lack of

comparable methods. On coastlines with significant

terrestrial run-off, fish communities are typically

investigated using a range of non-comparable tech-

niques. Traditionally, marine habitats have been

surveyed using visual census by divers (Barnes et al.

2012). The disturbance associated with divers often

triggers a flight response in fish, so in more turbid

areas, visual census by divers is inviable because the

flight distance can often be greater than the range of

visibility. In addition, in many estuarine areas diver

surveys are not possible because of large predators

(e.g. crocodiles). Instead, soft bottom estuarine habi-

tats have been surveyed with trawling methods (Rozas

and Minello 1997), and structured estuarine habitats,

such as mangroves, have been surveyed indirectly

with netting techniques (Sheaves et al. 2012). Conse-

quently, it has been difficult to compare habitat use

and assemblage structure both between different

habitats types in estuarine environments, and between
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estuarine and marine habitats. In these regions, the

influence of terrestrial run-off and the different

contexts its presence or absence creates, are a consid-

erable source of potential variability in habitat use

(Kimirei et al. 2015; Whitfield and Pattrick 2015).

In this study, we use a single technique, low

disturbance remote underwater video census, to char-

acterise juvenile habitat use throughout the full range

of shallow habitats available in a region, in both

marine and estuarine contexts. The development of

affordable, high quality underwater video units has

been a major break-through in overcoming the prob-

lem of fish flight response in limited visibility

situations (Sheaves et al. 2016), enabling ecologists

to accurately define fish-habitat relationships in a

range of inaccessible and challenging environments

(Cappo et al. 2003; Bradley et al. 2017). This

technology allowed us to directly compare juvenile

fish habitat use across different habitats and contexts

for the first time. Our study area provided natural

experimental conditions with a diversity of structural

habitat types present in both estuarine and marine

areas. We used machine-learning analysis to observe

non-linear relationships and complex interactive

effects between factors. Here, we examine how local

habitat characteristics and context contribute to the

organisation of assemblages throughout an entire

region, to understand the interplay of these two factors

in heterogeneous coastal environments.

Materials and methods

Study site

Sampling was carried out between 2012 and 2015 in

the Hinchinbrook region (18�S, 146�E), off north-

eastern Australia (Fig. 1), which encompasses areas of

the mainland, as well as Hinchinbrook Island and the

Palm Islands. Hinchinbrook Island lies adjacent to the

mainland separated by a channel which contains a

diverse mosaic of habitats. Terrestrial run-off from

two rivers and many small creeks produce seasonal

and daily variations in salinity (Wolanski et al. 1990).

This large estuarine channel consists of mangrove

forest, intertidal sand and mud flats, and sub-tidal

rocky boulder fields, biogenic soft bottom and vege-

tated habitats (Alongi et al. 1998; Bradley et al. 2017).

By contrast, the eastern coast of Hinchinbrook island

(i.e. ocean-facing side) is composed of extensive

sandy flats, smaller creeks, as well as non-estuarine

bays and fringing coral reefs. The Palm Islands lie

15 km offshore, and do not experience significant

variations in salinity. This near-shore complex of 10

continental islands, contains a diverse mix of intertidal

mangrove forest, reef flat with areas of live coral,

rubble, seagrass, macro-algae and unvegetated sand,

subtidal boulder fields, and extensive fringing coral

reefs.

The study region contains almost the entire breadth

of coastal and nearshore benthic habitats commonly

available to fish species in north-eastern Australia

(Sheaves 2009), allowing the diversity of habitat

variation to be encompassed without confounding

among-habitat differences with faunal differences

among regions. Accordingly, any differences in

species-specific juvenile presence between habitat

types can be more reliably attributed to physical,

geomorphic and biological factors at the habitat patch

scale, rather than at the oceanographic scale, and are

not due to latitudinal or climatic differences in species

distributions.

Video sampling

We sampled juvenile fish assemblages with unbaited

video point census surveys, which provided 1315

samples for analysis. This study builds directly on

Bradley et al. (2017), and the methods described

therein. The high replication technique used is partic-

ularly suitable for defining fish-habitat relationships,

as predictor and response variables are captured at the

same spatio-temporal scale (Hannah and Blume

2012). Each sample consisted of 15 min of continuous

undisturbed video recording; periods of disturbed

sediment and boat presence immediately following

deployment were discarded, and[ 100 m between

camera and vessel was maintained during recording.

The camera was orientated horizontally at an angle of

0� and a field of view of 130�, positioned at a height of
10 cm relative to the substratum. A patterned plastic

strip was fixed 0.5 m from the lens in the camera’s

field of view to provide a standard measure of water

clarity. Potential biases due to water clarity were

reduced by only including videos above a minimum

threshold of 0.5 m (i.e. when the patterns on the strip

were visible). As baited cameras would attract fish

from surrounding areas, our deployments were
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unbaited. This provided a point census of fish taxa

present, as well as biological and structural habitat

characteristics. We recorded fish species presence, and

measured species abundance using the maximum

number of individuals seen within the field of view

in any single video recording frame (30 frames per

second) over the 15 min sample (MaxN), to avoid

multiple counts of the same individuals (sensu Harvey

et al. 2007).

We determined substrate texture and dominant

biotic habitat for each video sample, based on a visual

estimate of what occupied the greatest percentage area

visible in the field of view. Our classification

scheme (Table 1) is a simplification of Ball et al.

(2006), and resulted in 20 different combinations of

substrate and biota found throughout the region—

giving us 20 putative habitat types, of which some

were commonly found, and others only rarely encoun-

tered (Supplementary material Appendix 1,

Table A1). By partitioning habitat characteristics

finely, we could observe the combination of charac-

teristics that juvenile fish actually responded to in our

subsequent analyses. The water depth of every video

deployment was determined by acoustic depth soun-

der. We distinguished estuarine from marine areas

based on regular periodic fluctuations in salinity

established by previously published research (Wolan-

ski et al. 1990), ground-truthed at the time of video

sampling by measuring salinity.

We identified all juvenile fish present in the video

sample to the lowest taxonomic level possible. Classi-

fication as juveniles was based on juvenile markings,

body shape and patterns of shading (Allen 1985;Wilson

1998; Allen et al. 2012; Froese and Pauly 2016), rather

than size. For taxa where there were clearly defined

visual differences in these characteristics between

recently settled individuals (e.g. weeks or months

post-settlement) and older juveniles (e.g. years post-

settlement), we divided juveniles into ‘early’ and ‘late’

phases. Identifications were reviewed by at least two

Fig. 1 Location of the Hinchinbrook/Palm Islands region in North Eastern Australia, and the areas covered by video point census

surveys
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additional experts to ensure consistent identification.

Identifications where consensus could not be reached

were assigned to the level of taxonomic grouping (e.g.

genus) where consensus was achieved. Several taxa

could only be identified to higher taxonomic levels

because the characteristics that distinguish some closely

related species (e.g. fin ray counts or morphological

measurements) could not be distinguished. In assem-

blage analysis, species were grouped to higher taxo-

nomic levelswhen less than 80%of individuals could be

positively identified to species level. When more than

80% were positively identified, we still only included

positively identified individuals in analyses for that

species. Itwasoften impossible to identify early juvenile

stage individuals in the genera Siganus and Lethrinus to

species level. On the occasions where individuals of

these genera swam within close range of the camera,

positive identification to species level was possible,

based on differences in juvenile markings. It was not

possible to identify juveniles for the families Mugilli-

dae, Clupeidae and Gobiidae.

Survey design

Surveys were conducted during daylight hours and

periods of relatively low turbidity to ensure conditions

appropriate for video sampling. Accordingly, sam-

pling occurred between June and December, outside

the North Australian monsoon. The minimum water

depth surveyed was 0.5 m, and the maximum water

depth surveyed was 10 m. Sampling was carried out

during the full breadth of variation in tidal inundation

(max. tidal amplitude 3.9 m) both in terms of the tidal

cycle (high-low) and tidal periods (springs and neaps).

Independence of video samples was maintained by

leaving[ 20 m between deployments, with cameras

usually spaced 50–100 m apart. Efforts were made to

sample the entire breadth of habitat variation present

in the region. Initially, the study area (Fig. 1) was

sampled randomly, with cameras placed at random

intervals from the shore, to achieve broad spatial

replication. After reviewing the metadata, targeted

sampling was performed to boost replication in

substrate/biota combinations with low representation,

though for some rare combinations of biota and

substrate, this could not be achieved (Supplementary

material Appendix 1, supplementary methods—sur-

vey design). The resulting data set was not completely

orthogonal, but it did capture the major variation in

habitat across the depth range (0–10 m) throughout

the study zone (Supplementary material Appendix 1,

Table A1). While the resulting data set is not strictly

Table 1 Classification scheme used for determining habitat attributes

Variable Category Definition

Substrate texture Pavement Consolidated/unbroken rock pavement

Boulder Grainsize[ 200 mm

Cobble Grainsize[ 63–200 mm

Gravel Grainsize[ 2–63 mm

Sand Grainsize 0.002–2 mm, composed primarily of sand

Mud Grainsize 0.002–2 mm, composed primarily of silt

Dominant biota Bare No visually obvious biota

Seagrass Members of the following seagrasses genera: Cymodocea,

Halophila, Halodule, Thalassia and Zostera

Macroalgae Members of the phyla Ochrophyta and Chlorophyta

Mangrove Emergent marine vegetation. In this region, the seaward

edges of forests are dominated by the genera Rhizophora

SI Sessile Invertebrates, including: cnidarian structures,

barnacles, soft coral, sponges of the family Tetillidae as

well as other unidentified sponges

Coral Extensive hard coral cover

Woody debris Fallen trees with structurally complex form

Each video sample was classified according to both their substrate texture and dominant biota, resulting in a compound habitat

category (e.g. ‘mud-mangrove’ or ‘boulder-macroalgae’, see Supplementary material Appendix 1, Table A1)
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stratified, differences in replication between habitat

types are representative, and are accounted for by the

analytical pathway detailed below.

Statistical analysis

Rather than using our own preconceived classification

of nursery habitat types and analysing for differences

in assemblage composition between them, we ‘let the

species tell their own story’ (Field et al. 1982). We

avoided a priori habitat categories by partitioning

habitat characteristics finely, pooling all samples and

employing a series of Classification and Regression

Tree (CART) analyses. Juvenile presence and assem-

blage composition is used to identify habitat qualities

that juveniles relate to, which is then used to define

juvenile habitat types in an empirical way.

While all available habitats were surveyed exten-

sively, samples from coral habitats were not pooled

with the other data in our tree analyses, as coral habitat

is known juvenile habitat for many reef fish species

that do not utilise other potential coastal nursery

habitats surveyed in this study (Dorenbosch et al.

2005; Honda et al. 2013). Following the classification

used by Kimirei et al. (2011), we pooled shallow coral

habitat from the crest, flat, and back-reef, and deeper

coral habitat from the reef slope. As we were only

interested in seeing if coral was an important juvenile

habitat for those species using other juvenile habitats,

for simplicity only species that had been encountered

in other habitats as well are presented. The results of

these reef surveys are presented alongside the results

from the non-coral nursery habitats identified in the

following analyses for comparison.

Firstly, to broadly examine the use of different

habitats by juvenile fish, each video sample was given

a binary classification according to whether any

juveniles of any species were present (1) or not (0).

Univariate classification tree analysis was performed

using the ‘party’ package in R (Hothorn et al. 2010),

with habitat characteristics (a single identifier com-

bining dominant biota and substrate texture—see

Table 1.) as the predictor variable. The resulting tree

presents the significant differences in the data set

based solely on habitat, and the p-values associated

with each split. This allowed us to distinguish the

habitat types where juveniles were usually present

(juveniles found in[ 70% of samples) from the

habitat types where juveniles were usually absent

(juveniles found in\ 30% of samples), regardless of

their estuarine or marine context.

Secondly, of the habitats where juveniles were

usually present, we sought to determine which

predictor variables were linked to differences in

juvenile fish species composition by using multivari-

ate regression tree analysis. The univariate tree had

identified several habitat categories where, throughout

the region, regardless of estuarine or marine context,

juveniles were usually absent (juveniles found in\
30% of samples). Multivariate distance measures

tend to behave erratically when many sparse samples

are included in analysis (Clarke et al. 2006). Habitat

types where less than 30% of samples contained

juveniles were excluded, to allow the multivariate

analysis to identify patterns of juvenile presence rather

than being overwhelmed by zeros due to species

absences. The data for these excluded habitat types is

presented along with the juvenile habitat types for

comparison (Supplementary material Appendix 1,

Table A2). For the same reasons, we removed all

videos where no juveniles were present, and we ran the

tree analysis using three different arbitrary decision

rules to eliminate rare taxa: excluding taxa that

occurred in\ 3%,\ 5% and\ 10% of samples.

The same tree structure was returned for all three

decision rules, indicating the structure was robust to

all species that occur in[ 3% of samples. This is the

final tree presented (Fig. 3a). The multivariate regres-

sion tree analysis was performed with Bray–Curtis

dissimilarity as the distance measure, using the mvpart

package in R (De’ath 2007; Ouellette and Legendre

2012).

Based on the predictors that best explained both

juvenile presence and species composition, we defined

six functionally different juvenile habitat categories

(each of which combine several of the original finely

partitioned habitat categories): shallow estuarine

rocky reef, deep estuarine rocky reef, estuarine

mangroves and woody debris, marine rocky reef,

marine seagrass and macroalgae, and marine man-

groves. Each category is defined by a distinct juvenile

fish assemblage (Fig. 3b). For each juvenile habitat

defined we present presence/absence information for

all species and life stages identified (Supplementary

material Appendix 1, Table A2). To examine differ-

ences in habitat use for common fish species, we

calculated the individual probability of encountering

each of the 16 most frequently encountered juvenile
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species in our data set (determined by presence,

summed and ranked across all samples), in each

juvenile habitat based on all data. We used approxi-

mate Bayesian computation in R to estimate the

probability of encounter for each fish species life stage

and estimate the uncertainty around that probability.

For those common taxa where both early and late

juvenile stages could be confidently distinguished,

relative density was estimated for each juvenile stage

in each juvenile habitat type. To estimate relative

density, CPUE (MaxN per 15 min video sample) was

calculated for each habitat.

Results

Juvenile presence

Juveniles were observed primarily in structurally

complex habitat rather than unstructured habitats.

The 1254 non-coral fish-habitat video samples were

classified into 20 different combinations of substrate

texture and dominant biota during video analysis. Of

these putative habitat types, four were identified in

univariate tree analysis (based on presence/absence of

any juveniles) as having consistently low occurrences

of juveniles (\ 30% of samples) regardless of depth

and marine or estuarine context (Fig. 2). In three open

bottom habitats (bare gravel, mud and sand) juvenile

encounter was extremely rare (5.0%). In seagrass beds

with muddy substrate, juvenile encounter was also low

(28.6% presence). Assemblage analysis was then

Fig. 2 Univariate classification tree of the presence or absence

of juvenile fish, performed on all non-coral samples (n = 1254).

Each division is labelled with the variable used in the split, the

result of the significance test of the difference between the two

groups separated by the split, and on either side of this label, the

categories separated by the split. Black bars indicate the

proportion of samples where juveniles were present in each

terminal node. See Table 1 for explanation of habitat categories
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performed on the remaining samples containing

juveniles (n = 417 video samples) from the 16 other

putative habitat types where juvenile encounters were

more common ([ 70%).

Juvenile assemblage composition

Multivariate analysis of fish assemblage composition

showed a clear hierarchy in the organisation of

juvenile fish communities, with assemblages being

first distinguished by environmental context, and then

by habitat type, lumping the 16 different combinations

of habitat characteristics into six functionally dissim-

ilar juvenile habitats (Fig. 3a): shallow estuarine

rocky reef, deep estuarine rocky reef, estuarine

mangroves and woody debris, marine seagrass and

macroalgae, marine rocky reef, and marine

mangroves.

Multivariate regression tree analysis of video

samples separated those from marine environments

and those from estuarine environments (Fig. 3a).

Within these two environmental contexts, samples

were split based on habitat attributes; however, the

particular habitat attributes that made up important

juvenile habitat differed between the two contexts

(Fig. 3a). Within estuarine contexts, the fish assem-

blage varied most between rocky habitats and man-

grove or woody debris habitats, and the assemblage in

rocky habitats also varied according to depth. Rocky

habitats included samples that were bare, as well as

those from rocky substrates with seagrass, macroal-

gae, and encrusting sessile invertebrates as their

dominant biota. Within marine environments, the

assemblage varied most between sandy mangroves

and all other structured habitat, which then differed

based on either the presence of submerged aquatic

vegetation (seagrass and macroalgae), or rocky sub-

strate. This last node included both bare rocky

substrates, and rocky substrates with mangroves. The

major difference in assemblage structure between the

two salinity contexts is clearly illustrated by the

probability of encounter of individual species among

habitats across the seascape (Fig. 3b). A set of taxa

were only found as juveniles within estuarine contexts,

including species from the families Lutjanidae, Labri-

dae and Sparidae. Another set of juveniles were found

across both estuarine and marine contexts, but were

more frequently encountered in marine habitats. This

included species from the families Carrangidae,

Lethrinidae, Lutjanidae, Nemipteridae and Siganidae.

A third set of taxa were only found in marine contexts,

and included species from the families/sub-families

Labridae, Lutjanidae, Mullidae, Pomacentridae,

Scarinae and Terapontidae.

Locations with the same habitat characteristics

harboured a completely different set of species

depending on the marine or estuarine context in which

they were found. Estuarine mangroves contained an

entirely different assemblage to marine mangroves,

and likewise for rocky reefs, and submerged aquatic

vegetation.

Habitat use patterns of early vs. late juveniles

Of taxa that were encountered in[ 3% of total

samples, where both early and late juvenile phases

could be identified, habitat use patterns were often

different according to juvenile phase, but remained

within either an estuarine or marine context (Fig. 4).

In general, early juvenile stages mostly occupied a

single habitat type, and were found infrequently in

other habitat types. By contrast, late juvenile stages

were frequently encountered in 2-4 habitat types. In

cFig. 3 a Multivariate regression tree showing the major

divisions in juvenile assemblage composition throughout the

region. Analysis was performed on all samples from the 16

putative habitat types where juvenile encounters were[ 70%,

excluding those samples where no juveniles were present

(n = 417). Each division is labelled with the factor used in the

split and the set of categories or values that are separated by the

split. The distance of descending branches in the dendrogram is

proportional to the difference between groups. b Approximate

Bayesian computation was used to estimate both the probability

of encounter for each fish species life stage and the uncertainty

around that probability. Histograms below each terminal node

show probability of encounter with 95% confidence intervals for

the 16 most commonly encountered juvenile taxa in shallow

habitats of the Hinchinbrook/Palm Islands region. As his-

tograms show modelled presences, error bars are sometimes

visible even when there were no recorded occurrences—an

encounter rate of zero in the data set does not necessarily mean a

zero probability of encounter. Back and fore reef habitats are

also displayed in this figure for comparison, though they were

not included in the CART analysis. Taxa are ordered according

to their presence in the six habitats (grey shading): species in the

first 6 rows are only present in the three estuarine habitats, the

second group (rows 7-13) are present in both the estuarine

habitats and the marine habitats, and the third group (rows

14-21) are only present in the marine habitats. JP (entire)

Juvenile Phase, EJP Early Juvenile Phase, LJP Late Juvenile

Phase
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the marine environment, there was a trend of early

juveniles in macroalgae and seagrass vegetated habi-

tat, and late juveniles in the mangroves, rocky reef and

back reef habitats. One exception to both these

patterns is Lutjanus fulviflamma, which is found as

an early juvenile in areas of both estuarine and marine

salinities, and is found as a late juvenile almost

exclusively in a single habitat type—marine

mangroves.

Discussion

For juvenile fish in our study, the context of a

structured habitat—in this case, whether it was in an

(a)

(b)
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estuarine or marine area—was more important than

the characteristics of that structured habitat—for

instance, whether it was a mangrove forest or a rocky

reef. Apparently similar habitat types appear to

function as a juvenile habitat for a completely

different set of species depending on the marine or

estuarine context in which they are found. This

provides clear evidence of the over-riding importance

of context-dependency in animal-habitat relationships

of the coastal zone. Our study demonstrates that

habitat types should not be treated as homogenous

units, and need to be defined by their environmental

context before their habitat functions can be evaluated

and predicted.

Mangroves

The Rhizophora-dominated mangrove forests of our

study area may have a very similar intertidal structural

appearance in estuarine and marine waters, but are

used by a different set of juvenile fauna. In estuarine

environments, mangroves and woody debris appear to

function as similar habitat. As far as juvenile fish are

concerned, long after a tree has perished, its structural

qualities can provide valuable subtidal habitat

(Nagelkerken and Faunce 2008). This complex of

living and dead trees serve as the predominant juvenile

habitat for a range of coastal and reef species. These

include important fisheries species such as Acan-

thopagrus pacificus, A. australis, Lutjanus

Fig. 4 Overall habitat use patterns for different juvenile life-

stages (EJP Early Juvenile Phase, LJP Late Juvenile Phase) of

Lethrinids, Scarines, Lutjanus carponotatus, Lutjanus fulvi-

flamma, Lutjanus argentimaculatus, and Lutjanus russellii. For

the Lethrinids, ‘Lethrinus EJP’ includes all Lethrinus early

juveniles—both those individuals that could be identified to

species level and those that could not-including but therefore not

limited to Lethrinus atkinsoni, Lethrinus genivittatus, Lethrinus

nebulosus, Lethrinus obsoletus, Lethrinus harak, and Lethrinus

virgatus. For the Scarines, early juveniles could not be

distinguished to species level aside from individuals of the

species Leptoscarus vaigiensis, and late juveniles could not be

distinguished to species level aside from individuals of the

species Scarus rivulatus
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argentimaculatus, L. russellii, Epinephelus coioides

and E. malabaricus. By contrast, sandy mangroves in

marine environments appear to function mainly as

habitat for juvenile trevally, reef snapper and emper-

ors. While juvenile fish were frequently encountered

there, marine mangroves were the predominant juve-

nile habitat for only two species, Lutjanus fulviflamma

and Caranx sexfasciatus. Marine mangroves on rocky

substrates appear to function as an extension of other

rocky reef habitat (discussed below). The habitat value

of mangroves elsewhere also appears to be defined by

estuarine or marine context (Igulu et al. 2014). In

Florida, distinct fish assemblages are associated with

mangrove prop-root habitat according to estuarine

influence, with juvenile Lutjanids and Haemulids

occurring in near-marine salinity mangroves, and

more estuarine taxa predominating upstream (Ley

et al. 1999). In the case of the goliath grouper

Epinephelus itajara, large differences in density,

home ranges size and growth were found between

estuarine and marine contexts (Koenig et al. 2007),

indicating serious fitness differences between con-

texts. Apparently, context greatly modifies the habitat

function of mangroves for juveniles.

Submerged aquatic vegetation

Vegetated soft substrates in marine environments were

found to be juvenile habitat for coral reef fish,

supporting the most diverse assemblage of juveniles

of any habitat surveyed. Importantly, this included

both seagrass and macro-algal habitats, which were

found in multivariate analysis to be indistinguishable

in terms of juvenile assemblage. While seagrass beds

are well known juvenile nurseries (Nagelkerken et al.

2000b; Heck et al. 2003), macro-algal beds can also

serve a very similar function (Evans et al. 2014; Tano

et al. 2017). Very little macroalgae were found in

estuarine contexts in our study. Areas of seagrass in

estuarine contexts were not commonly used as juve-

nile habitat. Most juveniles that did use these areas

(early juvenile lethrinids, siganids and terapontids)

also used marine seagrass and macro-algal beds with

much higher rates of encounter. However, a much

wider range of terapontid species were found in

estuarine seagrass beds, indicating that these beds may

serve distinct juvenile habitat functions from marine

beds. For seagrass beds, their estuarine or marine

context appears to determine both the tendency to

provide a juvenile habitat function and the species of

juveniles that utilise them.

Rocky reef

Rocky reef seems to perform completely different

juvenile habitat functions depending on the context in

which it is found. In marine environments, it was

found to be important juvenile habitat for a range of

coral reef fishes, with many of the juvenile species

found here also present in shallow coral habitat or

marine seagrass. Few species were present at higher

densities in rocky reef than these alternative habitats.

The exceptions being late juvenile Lutjanus carpono-

tatus, and early juvenile Scolopsis lineata. In estuarine

environments, rocky reef appears to provide important

habitat for snappers, particularly early-juvenile Lut-

janus russellii, and late-juvenile Lutjanus argentimac-

ulatus, L. johnii and L. russellii. Here, shallow rocky

reef harbours a greater diversity of juveniles at a

greater density than deep rocky reef, which appears to

harbour a depauperate assemblage aside from the

wrasse Halichoeres nigrescens and late juvenile L.

russellii. Our results show that rocky reef provides

juvenile habitat for different species in estuarine and

marine contexts.

Habitat linkages—seascape nurseries

Internal consistencies in juvenile habitat use within

estuarine and marine areas suggest that two function-

ally different ‘seascape nursery’ types exist at local

scales within a region. Our study identified two sets of

habitat types inhabited by two sets of juvenile fauna;

one defined by estuarine conditions and the other by

marine conditions. We found almost no cross-over in

the species of juveniles using each seascape type; i.e.

each had its own characteristic juvenile assemblage.

This indicates that these two seascape types function

somewhat independently. Within each, juveniles of

most taxa used more than one habitat type. This

finding suggests that individuals are likely to use

multiple habitat types within a seascape. Indeed, most

nursery species use multiple habitat types (Nagelk-

erken et al. 2000a; Nagelkerken 2007) to optimise

foraging and refuge throughout diel and tidal cycles

(Dorenbosch et al. 2004; Hammerschlag et al. 2010).

Furthermore, we found evidence that supported the

presence of habitat shifts for some species between
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different juvenile stages (in the species where we

could confidently identify different juvenile stages).

Shifts in habitat use are common during juvenile

development (Kimirei et al. 2011) and appear to be

driven by trade-offs between food availability and

predation risk (Grol et al. 2014). Together, our results

suggest that in both estuarine and marine contexts,

juveniles use a mosaic of habitats within seascapes

(Sheaves et al. 2014). Seascape nurseries like this have

been identified around the world—in the Caribbean,

many juveniles settle in coral rubble, move to seagrass

beds, then switch to the diurnal occupation of man-

groves with nocturnal feeding forays in adjacent

seagrass beds (Nagelkerken et al. 2015). However,

the presence of distinct types of seascape nurseries

operating side by side has not been reported. The

presence of multiple nursery seascape types may be

common in coastal and nearshore environments glob-

ally. In South Africa (Whitfield and Pattrick 2015) and

Portugal (Prista et al. 2003), different suites of juvenile

fish were found to use estuary systems and adjacent

coastal areas. In contrast, in the Middle Atlantic Bight,

inner continental shelf habitats function interchange-

ably with estuarine habitats as nursery grounds for

common marine fishes (Woodland et al. 2012).

Perhaps only particular coastal settings harbor multi-

ple seascape nurseries, where tidal range, rainfall and

geomorphology interact to produce the conditions for

segregated juvenile communities. At the very least, we

can predict that in low rainfall settings this segregation

does not tend to occur (e.g. Nagelkerken et al. 2000a),

whereas in high rainfall settings it is at least possible

(e.g. this study). We have found that multiple kinds of

independent seascape nurseries can potentially oper-

ate in close proximity, which has strong implications

for local-scale management and conservation of

juvenile fish habitats.

Key differences between estuarine and marine

seascapes

The differences in juvenile habitat use between

estuarine and marine contexts are likely due to a

range of factors. A myriad of co-varying contextual

factors can be encompassed in the contrast between

estuarine and marine areas. The factors that determine

nursery function, and the thresholds where this

function switches from one type to another, is not

definable from this study. Terrestrial runoff

simultaneously determines a range of factors that can

impact fish distribution, such as salinity (Martino and

Able 2003), temperature (Attrill and Power 2004),

sediment and nutrient loads (Cyrus 1992; DeMartini

et al. 2013), and dissolved oxygen (Eby and Crowder

2002). This is necessarily going to affect how fish use

habitats in their aquatic landscape (Marshall and

Elliott 1998; Zhang et al. 2009). These factors can in

turn define the kinds of biotic habitats present in a

location, their spatial configuration, and their micro

and macro faunal assemblages (Fabricius et al. 2005),

determining food availability and predation risk–

elements of context that are intrinsically important in

nursery value (Kimirei et al. 2015). This illustrates that

habitat value can be a dynamic rather than static

property. Changes in rainfall and run-off could alter

the assemblages of juveniles using particular habitats

in a particular location (Valesini et al. 1997). This has

implications for future change. Significant changes in

terrestrial runoff due to anthropogenic drivers such as

climate change or upstream development could alter

the habitat function of coastal and nearshore habitats

(Santos et al. 2018).

Habitat complexity

For the juveniles identifiable in this study, a pre-

requisite for a high probability of encounter in surveys

appears to be habitat complexity. Areas with complex

structure have long been recognised as important

nursery habitat (Beck et al. 2001; Laegdsgaard and

Johnson 2001; Heck et al. 2003; Gratwicke and

Speight 2005). Structure provides interstitial spaces

that can be utilised as refuge by small juvenile fishes

(Dahlgren and Eggleston 2000), and the size of

interstitial space has been effectively linked to the

body size of fish that use it (Hixon and Beets

1989, 1993). Our results corroborate studies that have

convincingly demonstrated the relative importance of

complex habitat through directly comparable sam-

pling between structured and adjacent unstructured

areas (Minello and Rozas 2002) and experimental

manipulation (Verweij et al. 2006). However, above a

minimum threshold, structural complexity is unlikely

to be the only factor that distinguishes valuable

juvenile habitat (Grol et al. 2011).
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Limitations

We measured probability of encounter and relative

abundance (MaxN) in different habitats, both of which

indicate frequency or commonality of use, and provide

a relative measure of density. Although frequency or

abundance of juveniles do not necessarily directly

relate to nursery value, in a general sense, high

densities of juveniles in a habitat are strongly indica-

tive of nursery function (Prista et al. 2003; Whitfield

and Pattrick 2015). As habitat use is a necessary

precondition of nursery function, this is a logical

starting point upon which further research can build.

While we have not investigated the range of other

measures put forward by authors for determining

nursery function, such as contribution to adult popu-

lations (Beck et al. 2001; Dahlgren et al. 2006), we see

this is a necessary trade off made in order to take a

broad look at the factors structuring juvenile habitat

use. It is on this basis that the range of Hinchinbrook

region coastal habitats have been discussed above.

Our study did not account for temporal variation in

a strictly orthogonal way due to constraints on optimal

sampling conditions and sampling effort. Seasonal

peaks in juvenile recruitment, which may either be

over or under represented in our dataset, mean that our

rates of encounter for early juvenile stages are unlikely

to be truly representative of the entire year. Therefore,

we have focused our interpretation on differences in

species composition, rather than absolute rates of

encounter, and have included even low encounter

habitats in our interpretation of juvenile habitat use

(Supplementary material Appendix 1, Table A2).

Conclusion

Estuarine and marine areas were used by different

juvenile fish, and the habitats found within each area

were used in very different ways. Because of this, the

habitats occurring in either area should be considered

different, even when dominated by the same habitat-

forming plants or animals. It is often tacitly assumed

that patches of the same habitat type have equivalent

ecological roles. These assumptions of equivalence

are often employed in ecosystem based species

management, the practise of environmental offsetting,

and restoration activities. Wherever they are

employed, these assumptions can have serious

environmental and social consequences if incorrect.

The primacy of context dependence in the habitat

relationships of juvenile fish in our study complicates

these assumptions, implying that a robust understand-

ing of context must be considered before equivalence

can be assumed with confidence.
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